Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Hepatology ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652584

RESUMO

BACKGROUND AIMS: HCV infection continues to be a major global health burden, despite effective antiviral treatments. The urgent need for a protective vaccine is hindered by the scarcity of suitable HCV permissive animal models tractable in vaccination and challenge studies. Currently, only antibody neutralization studies in infectious cell culture systems or studies of protection by passive immunization of human-liver chimeric mice offer the possibility to evaluate the effect of vaccine-induced antibodies. However, differences between culture-permissive and in vivo-permissive viruses make it a challenge to compare analyses between platforms. To address this problem, we aimed at developing genotype-specific virus variants with genetic stability both in vitro and in vivo. APPROACH RESULTS: We demonstrated infection of human-liver chimeric mice with cell culture-adapted HCV JFH1-based Core-NS2 recombinants of genotype 1-6, with a panel of 10 virus strains used extensively in neutralization and receptor studies. Clonal re-engineering of mouse-selected mutations resulted in virus variants with robust replication both in Huh7.5 cells and human-liver chimeric mice, with genetic stability. Furthermore, we showed that overall, these virus variants have similar in vitro neutralization profiles as their parent strains and demonstrated their use for in vivo neutralization studies. CONCLUSIONS: These mouse-selected HCV recombinants enable triage of new vaccine-relevant antibodies in vitro and further allow characterization of protection from infection in vivo using identical viruses in human-liver chimeric mice. As such, these viruses will serve as important resources in testing novel antibodies and can thus guide strategies to develop an efficient protective vaccine against HCV infection.

2.
Nature ; 619(7971): 811-818, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37407817

RESUMO

RNA viruses have evolved elaborate strategies to protect their genomes, including 5' capping. However, until now no RNA 5' cap has been identified for hepatitis C virus1,2 (HCV), which causes chronic infection, liver cirrhosis and cancer3. Here we demonstrate that the cellular metabolite flavin adenine dinucleotide (FAD) is used as a non-canonical initiating nucleotide by the viral RNA-dependent RNA polymerase, resulting in a 5'-FAD cap on the HCV RNA. The HCV FAD-capping frequency is around 75%, which is the highest observed for any RNA metabolite cap across all kingdoms of life4-8. FAD capping is conserved among HCV isolates for the replication-intermediate negative strand and partially for the positive strand. It is also observed in vivo on HCV RNA isolated from patient samples and from the liver and serum of a human liver chimeric mouse model. Furthermore, we show that 5'-FAD capping protects RNA from RIG-I mediated innate immune recognition but does not stabilize the HCV RNA. These results establish capping with cellular metabolites as a novel viral RNA-capping strategy, which could be used by other viruses and affect anti-viral treatment outcomes and persistence of infection.


Assuntos
Flavina-Adenina Dinucleotídeo , Hepacivirus , Capuzes de RNA , RNA Viral , Animais , Humanos , Camundongos , Quimera/virologia , Flavina-Adenina Dinucleotídeo/metabolismo , Hepacivirus/genética , Hepacivirus/imunologia , Hepatite C/virologia , Reconhecimento da Imunidade Inata , Fígado/virologia , Estabilidade de RNA , RNA Viral/química , RNA Viral/genética , RNA Viral/imunologia , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Replicação Viral/genética , Capuzes de RNA/metabolismo
3.
Science ; 380(6640): 37-38, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37023205
4.
Hepatology ; 78(2): 621-636, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36999539

RESUMO

BACKGROUND AND AIMS: The high HCV infection cure rates achieved with direct-acting antiviral (DAA) treatments could be compromised in the future by the emergence of antiviral resistance. Thus, it is essential to understand the viral determinants that influence DAA resistance, which is most prevalent in genotype 3. We aimed at studying how resistance to protease-, NS5A-, and NS5B-inhibitors influences the activities of glecaprevir/pibrentasvir, sofosbuvir/velpatasvir, and sofosbuvir/velpatasvir/voxilaprevir in cell culture, and how the HCV genome adapts to selective pressure by successive rounds of treatment failure. APPROACH AND RESULTS: A previously developed in vivo infectious cDNA clone of strain S52 (genotype 3a) was adapted to efficiently replicate and propagate in human hepatoma cells (Huh7.5) using 31 adaptive substitutions. DAA escape experiments resulted in the selection of S52 variants with decreased drug susceptibility (resistance), which was linked to the emergence of known resistance-associated substitutions (RASs). NS5A-inhibitor resistance was sufficient to promote treatment failure with double-DAA but not triple-DAA regimens. Enhanced viral fitness associated with the selection of sofosbuvir resistance accelerated escape from DAAs. After serial DAA treatment failure, HCV genetic evolution led to a complex genome-wide network of substitutions, some of which coevolved with known RASs. CONCLUSIONS: Baseline NS5A-RAS can compromise the efficacy of double-DAA pangenotypic regimens for HCV genotype 3, and enhanced viral fitness can accelerate treatment failure. Persistence of RASs after successive treatment failure is facilitated by the remarkable evolutionary capacity and plasticity of the HCV genome. Proof-of-concept for the potential development of multi-DAA resistance is shown.


Assuntos
Hepatite C Crônica , Hepatite C , Humanos , Sofosbuvir/farmacologia , Sofosbuvir/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Hepacivirus/genética , Hepatite C Crônica/tratamento farmacológico , Quimioterapia Combinada , Hepatite C/tratamento farmacológico , Genótipo , Farmacorresistência Viral/genética , Proteínas não Estruturais Virais/genética
5.
Hepatology ; 77(3): 982-996, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36056620

RESUMO

BACKGROUND AND AIMS: HCV evasion of neutralizing antibodies (nAb) results in viral persistence and poses challenges to the development of an urgently needed vaccine. N-linked glycosylation of viral envelope proteins is a key mechanism for such evasion. To facilitate rational vaccine design, we aimed to identify determinants of protection of conserved neutralizing epitopes. APPROACH AND RESULTS: Using a reverse evolutionary approach, we passaged genotype 1a, 1b, 2a, 3a, and 4a HCV with envelope proteins (E1 and E2) derived from chronically infected patients without selective pressure by nAb in cell culture. Compared with the original viruses, HCV recombinants, engineered to harbor substitutions identified in polyclonal cell culture-passaged viruses, showed highly increased fitness and exposure of conserved neutralizing epitopes in antigenic regions 3 and 4, associated with protection from chronic infection. Further reverse genetic studies of acquired E1/E2 substitutions identified positions 418 and 532 in the N1 and N6 glycosylation motifs, localizing to adjacent E2 areas, as key regulators of changes of the E1/E2 conformational state, which governed viral sensitivity to nAb. These effects were independent of predicted glycan occupancy. CONCLUSIONS: We show how N-linked glycosylation motifs can trigger dramatic changes in HCV sensitivity to nAb, independent of glycan occupancy. These findings aid in the understanding of HCV nAb evasion and rational vaccine design, as they can be exploited to stabilize the structurally flexible envelope proteins in an open conformation, exposing important neutralizing epitopes. Finally, this work resulted in a panel of highly fit cell culture infectious HCV recombinants.


Assuntos
Hepatite C , Proteínas do Envelope Viral , Humanos , Proteínas do Envelope Viral/genética , Anticorpos Neutralizantes , Epitopos , Polissacarídeos/metabolismo , Hepatite C/prevenção & controle , Hepacivirus , Anticorpos Anti-Hepatite C
6.
Viruses ; 14(2)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35215765

RESUMO

The COVID-19 pandemic continues to threaten healthcare systems worldwide due to the limited access to vaccines, suboptimal treatment options, and the continuous emergence of new and more transmissible SARS-CoV-2 variants. Reverse-genetics studies of viral genes and mutations have proven highly valuable in advancing basic virus research, leading to the development of therapeutics. We developed a functional and highly versatile full-length SARS-CoV-2 infectious system by cloning the sequence of a COVID-19 associated virus isolate (DK-AHH1) into a bacterial artificial chromosome (BAC). Viruses recovered after RNA-transfection of in vitro transcripts into Vero E6 cells showed growth kinetics and remdesivir susceptibility similar to the DK-AHH1 virus isolate. Insertion of reporter genes, green fluorescent protein, and nanoluciferase into the ORF7 genomic region led to high levels of reporter activity, which facilitated high throughput treatment experiments. We found that putative coronavirus remdesivir resistance-associated substitutions F480L and V570L-and naturally found polymorphisms A97V, P323L, and N491S, all in nsp12-did not decrease SARS-CoV-2 susceptibility to remdesivir. A nanoluciferase reporter clone with deletion of spike (S), envelope (E), and membrane (M) proteins exhibited high levels of transient replication, was inhibited by remdesivir, and therefore could function as an efficient non-infectious subgenomic replicon system. The developed SARS-CoV-2 reverse-genetics systems, including recombinants to modify infectious viruses and non-infectious subgenomic replicons with autonomous genomic RNA replication, will permit high-throughput cell culture studies-providing fundamental understanding of basic biology of this coronavirus. We have proven the utility of the systems in rapidly introducing mutations in nsp12 and studying their effect on the efficacy of remdesivir, which is used worldwide for the treatment of COVID-19. Our system provides a platform to effectively test the antiviral activity of drugs and the phenotype of SARS-CoV-2 mutants.


Assuntos
Antivirais/farmacologia , Farmacorresistência Viral/genética , Genética Reversa/métodos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , Replicação Viral/genética , Substituição de Aminoácidos , Animais , Chlorocebus aethiops , Cromossomos Artificiais Bacterianos/genética , Humanos , Polimorfismo Genético , Replicon/efeitos dos fármacos , Replicon/genética , Células Vero
7.
Viruses ; 13(10)2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34696509

RESUMO

We report the in vitro efficacy of ion-channel inhibitors amantadine, memantine and rimantadine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In VeroE6 cells, rimantadine was most potent followed by memantine and amantadine (50% effective concentrations: 36, 80 and 116 µM, respectively). Rimantadine also showed the highest selectivity index, followed by amantadine and memantine (17.3, 12.2 and 7.6, respectively). Similar results were observed in human hepatoma Huh7.5 and lung carcinoma A549-hACE2 cells. Inhibitors interacted in a similar antagonistic manner with remdesivir and had a similar barrier to viral escape. Rimantadine acted mainly at the viral post-entry level and partially at the viral entry level. Based on these results, rimantadine showed the most promise for treatment of SARS-CoV-2.


Assuntos
Amantadina/farmacologia , Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Memantina/farmacologia , Rimantadina/farmacologia , SARS-CoV-2/efeitos dos fármacos , Células A549 , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/farmacologia , Animais , Linhagem Celular Tumoral , Chlorocebus aethiops , Dinamarca , Reposicionamento de Medicamentos , Humanos , Canais Iônicos/antagonistas & inibidores , Células Vero
8.
Sci Rep ; 11(1): 14571, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34272426

RESUMO

Effective and affordable treatments for patients suffering from coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), are needed. We report in vitro efficacy of Artemisia annua extracts as well as artemisinin, artesunate, and artemether against SARS-CoV-2. The latter two are approved active pharmaceutical ingredients of anti-malarial drugs. Concentration-response antiviral treatment assays, based on immunostaining of SARS-CoV-2 spike glycoprotein, revealed that treatment with all studied extracts and compounds inhibited SARS-CoV-2 infection of VeroE6 cells, human hepatoma Huh7.5 cells and human lung cancer A549-hACE2 cells, without obvious influence of the cell type on antiviral efficacy. In treatment assays, artesunate proved most potent (range of 50% effective concentrations (EC50) in different cell types: 7-12 µg/mL), followed by artemether (53-98 µg/mL), A. annua extracts (83-260 µg/mL) and artemisinin (151 to at least 208 µg/mL). The selectivity indices (SI), calculated based on treatment and cell viability assays, were mostly below 10 (range 2 to 54), suggesting a small therapeutic window. Time-of-addition experiments in A549-hACE2 cells revealed that artesunate targeted SARS-CoV-2 at the post-entry level. Peak plasma concentrations of artesunate exceeding EC50 values can be achieved. Clinical studies are required to further evaluate the utility of these compounds as COVID-19 treatment.


Assuntos
Artemisininas/farmacologia , Extratos Vegetais/farmacologia , SARS-CoV-2/efeitos dos fármacos , Células A549 , Animais , Artemisia annua/química , Chlorocebus aethiops , Humanos , Células Vero , Tratamento Farmacológico da COVID-19
9.
PLoS One ; 16(7): e0255336, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34329365

RESUMO

Yearly, about 1.5 million people become chronically infected with hepatitis C virus (HCV) and for the 71 million with chronic HCV infection about 400,000 die from related morbidities, including liver cirrhosis and cancer. Effective treatments exist, but challenges including cost-of-treatment and wide-spread undiagnosed infection, necessitates the development of vaccines. Vaccines should induce neutralizing antibodies (NAbs) against the HCV envelope (E) transmembrane glycoprotein 2, E2, which partly depends on its interaction partner, E1, for folding. Here, we generated three soluble HCV envelope protein antigens with the transmembrane regions deleted (i.e., fused peptide backbones), termed sE1E2 (E1 followed by E2), sE2E1 (E2 followed by E1), and sE21E (E2 followed by inverted E1). The E1 inversion for sE21E positions C-terminal residues of E1 near C-terminal residues of E2, which is in analogy to how they likely interact in native E1/E2 complexes. Probing conformational E2 epitope binding using HCV patient-derived human monoclonal antibodies, we show that sE21E was superior to sE2E1, which was consistently superior to sE1E2. This correlated with improved induction of NAbs by sE21E compared with sE2E1 and especially compared with sE1E2 in female BALB/c mouse immunizations. The deletion of the 27 N-terminal amino acids of E2, termed hypervariable region 1 (HVR1), conferred slight increases in antigenicity for sE2E1 and sE21E, but severely impaired induction of antibodies able to neutralize in vitro viruses retaining HVR1. Finally, comparing sE21E with sE2 in mouse immunizations, we show similar induction of heterologous NAbs. In summary, we find that C-terminal E2 fusion of E1 or 1E is superior to N-terminal fusion, both in terms of antigenicity and the induction of heterologous NAbs. This has relevance when designing HCV E1E2 vaccine antigens.


Assuntos
Antígenos Virais , Hepacivirus , Anticorpos Anti-Hepatite C/imunologia , Proteínas do Envelope Viral , Vacinas contra Hepatite Viral , Animais , Antígenos Virais/genética , Antígenos Virais/imunologia , Antígenos Virais/farmacologia , Avaliação de Medicamentos , Feminino , Células HEK293 , Hepacivirus/genética , Hepacivirus/imunologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Solubilidade , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/farmacologia , Vacinas contra Hepatite Viral/genética , Vacinas contra Hepatite Viral/imunologia , Vacinas contra Hepatite Viral/farmacologia
10.
Antimicrob Agents Chemother ; 65(9): e0268020, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34097489

RESUMO

Antivirals targeting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) could improve treatment of COVID-19. We evaluated the efficacy of clinically relevant hepatitis C virus (HCV) NS3 protease inhibitors (PIs) against SARS-CoV-2 and their interactions with remdesivir, the only direct-acting antiviral approved for COVID-19 treatment. HCV PIs showed differential potency in short-term treatment assays based on the detection of SARS-CoV-2 spike protein in Vero E6 cells. Linear PIs boceprevir, telaprevir, and narlaprevir had 50% effective concentrations (EC50) of ∼40 µM. Among the macrocyclic PIs, simeprevir had the highest (EC50, 15 µM) and glecaprevir the lowest (EC50, >178 µM) potency, with paritaprevir, grazoprevir, voxilaprevir, vaniprevir, danoprevir, and deldeprevir in between. Acyclic PIs asunaprevir and faldaprevir had EC50s of 72 and 23 µM, respectively. ACH-806, inhibiting the HCV NS4A protease cofactor, had an EC50 of 46 µM. Similar and slightly increased PI potencies were found in human hepatoma Huh7.5 cells and human lung carcinoma A549-hACE2 cells, respectively. Selectivity indexes based on antiviral and cell viability assays were highest for linear PIs. In short-term treatments, combination of macrocyclic but not linear PIs with remdesivir showed synergism in Vero E6 and A549-hACE2 cells. Longer-term treatment of infected Vero E6 and A549-hACE2 cells with 1-fold EC50 PI revealed minor differences in the barrier to SARS-CoV-2 escape. Viral suppression was achieved with 3- to 8-fold EC50 boceprevir or 1-fold EC50 simeprevir or grazoprevir, but not boceprevir, in combination with 0.4- to 0.8-fold EC50 remdesivir; these concentrations did not lead to viral suppression in single treatments. This study could inform the development and application of protease inhibitors for optimized antiviral treatments of COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , Hepatite C Crônica , Hepatite C , Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Chlorocebus aethiops , Hepacivirus , Hepatite C/tratamento farmacológico , Humanos , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Células Vero , Inibidores de Protease Viral
11.
Antimicrob Agents Chemother ; 65(7): e0009721, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33903110

RESUMO

Efforts to mitigate the coronavirus disease 2019 (COVID-19) pandemic include the screening of existing antiviral molecules that could be repurposed to treat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Although SARS-CoV-2 replicates and propagates efficiently in African green monkey kidney (Vero) cells, antivirals such as nucleos(t)ide analogs (NUCs) often show decreased activity in these cells due to inefficient metabolization. SARS-CoV-2 exhibits low viability in human cells in culture. Here, serial passages of a SARS-CoV-2 isolate (original-SARS2) in the human hepatoma cell clone Huh7.5 led to the selection of a variant (adapted-SARS2) with significantly improved infectivity in human liver (Huh7 and Huh7.5) and lung cancer (unmodified Calu-1 and A549) cells. The adapted virus exhibited mutations in the spike protein, including a 9-amino-acid deletion and 3 amino acid changes (E484D, P812R, and Q954H). E484D also emerged in Vero E6-cultured viruses that became viable in A549 cells. Original and adapted viruses were susceptible to scavenger receptor class B type 1 (SR-B1) receptor blocking, and adapted-SARS2 exhibited significantly less dependence on ACE2. Both variants were similarly neutralized by COVID-19 convalescent-phase plasma, but adapted-SARS2 exhibited increased susceptibility to exogenous type I interferon. Remdesivir inhibited original- and adapted-SARS2 similarly, demonstrating the utility of the system for the screening of NUCs. Among the tested NUCs, only remdesivir, molnupiravir, and, to a limited extent, galidesivir showed antiviral effects across human cell lines, whereas sofosbuvir, ribavirin, and favipiravir had no apparent activity. Analogously to the emergence of spike mutations in vivo, the spike protein is under intense adaptive selection pressure in cell culture. Our results indicate that the emergence of spike mutations will most likely not affect the activity of remdesivir.


Assuntos
COVID-19 , SARS-CoV-2 , Antivirais/farmacologia , Chlorocebus aethiops , Humanos , Pandemias , Glicoproteína da Espícula de Coronavírus , Replicação Viral
12.
Sci Rep ; 10(1): 16261, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004836

RESUMO

There is a large unmet need for a prophylactic hepatitis C virus (HCV) vaccine to control the ongoing epidemic with this deadly pathogen. Many antiviral vaccines employ whole viruses as antigens. For HCV, this approach became feasible following the development of infectious cell culture systems for virus production. However, the lack of efficient downstream processes (DSP) for HCV purification poses a roadblock for the development of a whole virus vaccine. Using cell culture-derived genotype 1a HCV we developed a scalable and efficient DSP train, employing commonly used clarification and ultrafiltration techniques, followed by two membrane-based chromatography steps. For virus capture, steric exclusion chromatography using cellulose membranes was established, resulting in a virtually complete virus recovery with > 99% protein and 84% DNA depletion. Virus polishing was achieved by sulphated cellulose membrane adsorbers with ~ 50% virus recovery and > 99% protein and 90% DNA depletion. Additional nuclease digestion resulted in 99% overall DNA depletion with final DNA concentrations of 2 ng/mL. Process results were comparable for cell culture-derived HCV of another major genotype (5a). This study provides proof-of-concept for establishment of an efficient and economically attractive DSP with potential application for production of an inactivated whole virus vaccine against HCV for human use.


Assuntos
Hepacivirus/imunologia , Vacinas contra Hepatite Viral/imunologia , Cromatografia em Gel , Hepacivirus/genética , Humanos , Ultrafiltração , Vacinas de Produtos Inativados , Vacinas contra Hepatite Viral/genética , Vacinas contra Hepatite Viral/isolamento & purificação
13.
J Hepatol ; 70(3): 388-397, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30395912

RESUMO

BACKGROUND & AIMS: Protease inhibitors (PIs) are of central importance in the treatment of patients with chronic hepatitis C virus (HCV) infection. HCV NS3 protease (NS3P) position 80 displays polymorphisms associated with resistance to the PI simeprevir for HCV genotype 1a. We investigated the effects of position-80-substitutions on fitness and PI-resistance for HCV genotypes 1-6, and analyzed evolutionary mechanisms underlying viral escape mediated by pre-existing Q80K. METHODS: The fitness of infectious NS3P recombinants of HCV genotypes 1-6, with engineered position-80-substitutions, was studied by comparison of viral spread kinetics in Huh-7.5 cells in culture. Median effective concentration (EC50) and fold resistance for PIs simeprevir, asunaprevir, paritaprevir, grazoprevir, glecaprevir and voxilaprevir were determined in short-term treatment assays. Viral escape was studied by long-term treatment of genotype 1a recombinants with simeprevir, grazoprevir, glecaprevir and voxilaprevir and of genotype 3a recombinants with glecaprevir and voxilaprevir, next generation sequencing, NS3P substitution linkage and haplotype analysis. RESULTS: Among tested PIs, only glecaprevir and voxilaprevir showed pan-genotypic activity against the original genotype 1-6 culture viruses. Variants with position-80-substitutions were all viable, but fitness depended on the specific substitution and the HCV isolate. Q80K conferred resistance to simeprevir across genotypes but had only minor effects on the activity of the remaining PIs. For genotype 1a, pre-existing Q80K mediated accelerated escape from simeprevir, grazoprevir and to a lesser extent glecaprevir, but not voxilaprevir. For genotype 3a, Q80K mediated accelerated escape from glecaprevir and voxilaprevir. Escape was mediated by rapid and genotype-, PI- and PI-concentration-dependent co-selection of clinically relevant resistance associated substitutions. CONCLUSIONS: Position-80-substitutions had relatively low fitness cost and the potential to promote HCV escape from clinically relevant PIs in vitro, despite having a minor impact on results in classical short-term resistance assays. LAY SUMMARY: Among all clinically relevant hepatitis C virus protease inhibitors, voxilaprevir and glecaprevir showed the highest and most uniform activity against cell culture infectious hepatitis C virus with genotype 1-6 proteases. Naturally occurring amino acid changes at protease position 80 had low fitness cost and influenced sensitivity to simeprevir, but not to other protease inhibitors in short-term treatment assays. Nevertheless, the pre-existing change Q80K had the potential to promote viral escape from protease inhibitors during long-term treatment by rapid co-selection of additional resistance changes, detected by next generation sequencing.


Assuntos
Antivirais , Farmacorresistência Viral/genética , Hepacivirus , Hepatite C Crônica , Proteínas não Estruturais Virais , Antivirais/classificação , Antivirais/farmacologia , Ligação Genética , Hepacivirus/efeitos dos fármacos , Hepacivirus/genética , Hepacivirus/patogenicidade , Hepatite C Crônica/tratamento farmacológico , Hepatite C Crônica/virologia , Humanos , Polimorfismo Genético , Inibidores de Proteases/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/genética
14.
Sci Rep ; 8(1): 17505, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30504788

RESUMO

Chronic hepatitis C virus (HCV) infection poses a serious global public health burden. Despite the recent development of effective treatments there is a large unmet need for a prophylactic vaccine. Further, antiviral resistance might compromise treatment efficiency in the future. HCV cell culture systems are typically based on Huh7 and derived hepatoma cell lines cultured in monolayers. However, efficient high cell density culture systems for high-yield HCV production and studies of antivirals are lacking. We established a system based on Huh7.5 cells cultured in a hollow fiber bioreactor in the presence or absence of bovine serum. Using an adapted chimeric genotype 5a virus, we achieved peak HCV infectivity and RNA titers of 7.6 log10 FFU/mL and 10.4 log10 IU/mL, respectively. Bioreactor derived HCV showed high genetic stability, as well as buoyant density, sensitivity to neutralizing antibodies AR3A and AR4A, and dependency on HCV co-receptors CD81 and SR-BI comparable to that of HCV produced in monolayer cell cultures. Using the bioreactor platform, treatment with the NS5A inhibitor daclatasvir resulted in HCV escape mediated by the NS5A resistance substitution Y93H. In conclusion, we established an efficient high cell density HCV culture system with implications for studies of antivirals and vaccine development.


Assuntos
Antivirais/farmacologia , Reatores Biológicos , Descoberta de Drogas , Hepacivirus/efeitos dos fármacos , Hepatite C/virologia , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Linhagem Celular Tumoral , Células Cultivadas , Descoberta de Drogas/métodos , Farmacorresistência Viral/efeitos dos fármacos , Genótipo , Hepacivirus/genética , Hepacivirus/imunologia , Anticorpos Anti-Hepatite/imunologia , Anticorpos Anti-Hepatite/farmacologia , Hepatite C/tratamento farmacológico , Hepatite C/imunologia , Humanos , Imunoglobulina G/imunologia , Imunoglobulina G/farmacologia , Replicação Viral/efeitos dos fármacos
15.
Virology ; 522: 177-192, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30032031

RESUMO

The six major epidemiologically important hepatitis C virus (HCV) genotypes differ in global distribution and antiviral responses. Full-length infectious cell-culture adapted clones, the gold standard for HCV studies in vitro, are missing for genotypes 4 and 5. To address this challenge for genotype 5, we constructed a consensus full-length clone of strain SA13 (SA13fl), which was found non-viable in Huh7.5 cells. Step-wise adaptation of SA13fl-based recombinants, beginning with a virus encoding the NS5B-thumb domain and 3´UTR of JFH1 (SA13/JF372-X), resulted in a high-titer SA13 virus with only 41 JFH1-encoded NS5B-thumb residues (SA13/JF470-510cc); this required sixteen cell-culture adaptive substitutions within the SA13fl polyprotein and two 3´UTR-changes. SA13/JF372-X and SA13/JF470-510cc were equally sensitive to nucleoside polymerase inhibitors, including sofosbuvir, but showed differential sensitivity to inhibitors targeting the NS5B palm or thumb. SA13/JF470-510cc represents a model to elucidate the influence of HCV RNA elements on viral replication and map determinants of sensitivity to polymerase inhibitors.


Assuntos
Antivirais/isolamento & purificação , Avaliação Pré-Clínica de Medicamentos/métodos , Hepacivirus/crescimento & desenvolvimento , Hepacivirus/genética , Hepatócitos/virologia , Proteínas não Estruturais Virais/genética , Cultura de Vírus/métodos , Antivirais/farmacologia , Técnicas de Cultura de Células/métodos , Linhagem Celular , Genótipo , Hepacivirus/classificação , Humanos
16.
Sci Rep ; 8(1): 4619, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29545599

RESUMO

Ribavirin (RBV) is a broad-spectrum antiviral active against a wide range of RNA viruses. Despite having been used for decades in the treatment of chronic hepatitis C virus (HCV) infection, the precise mechanism of action of RBV is unknown. In other viruses, it inhibits propagation by increasing the rate of G-to-A and C-to-U transitions. Here, we utilized the J6/JFH1 HCV cell-culture system to investigate whether RBV inhibits HCV through the same mechanism. Infected Huh7.5 cells were treated with increasing concentrations of RBV or its phosphorylated forms. A fragment of the HCV NS5B-polymerase gene was amplified, cloned, and sequenced to estimate genetic distances. We confirm that the antiviral effect of all three RBV-drug forms on HCV relies on induction of specific transitions (G-to-A and C-to-U). These mutations lead to generation of non-infectious virions, reflected by decreased spread of HCV in cell culture despite relatively limited effect on virus genome titers. Moreover, treatment experiments conducted on a novel Huh7.5 cell line stably overexpressing adenosine kinase, a key enzyme for RBV activation, yielded comparable results. This study indicates that RBV action on HCV in hepatoma cell-culture is exerted through increase in mutagenesis, mediated by RBV triphosphate, and leading to production of non-infectious viruses.


Assuntos
Genoma Viral , Hepacivirus/efeitos dos fármacos , Hepacivirus/genética , Hepatite C/tratamento farmacológico , Mutação , RNA Viral/genética , Ribavirina/farmacologia , Proteínas não Estruturais Virais/genética , Antivirais/farmacologia , Células Cultivadas , Farmacorresistência Viral/genética , Genótipo , Hepatite C/virologia , Humanos , Mutagênese , Replicação Viral
17.
Gastroenterology ; 154(8): 2194-2208.e12, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29454794

RESUMO

BACKGROUND & AIMS: Chronic liver diseases caused by hepatitis C virus (HCV) genotype 6 are prevalent in Asia, and millions of people require treatment with direct-acting antiviral regimens, such as NS5A inhibitor velpatasvir combined with the NS5B polymerase inhibitor sofosbuvir. We developed infectious cell culture models of HCV genotype 6a infection to study the effects of these inhibitors and the development of resistance. METHODS: The consensus sequences of strains HK2 (MG717925) and HK6a (MG717928), originating from serum of patients with chronic HCV infection, were determined by Sanger sequencing of genomes amplified by reverse-transcription polymerase chain reaction. In vitro noninfectious full-length clones of these 6a strains were subsequently adapted in Huh7.5 cells, primarily by using substitutions identified in JFH1-based Core-NS5A and Core-NS5B genotype 6a recombinants. We studied the efficacy of NS5A and NS5B inhibitors in concentration-response assays. We examined the effects of long-term culture of Huh7.5 cells incubated with velpatasvir and sofosbuvir singly or combined following infection with passaged full-length HK2 or HK6a recombinant viruses. Resistance-associated substitutions (RAS) were identified by Sanger and next-generation sequencing, and their effects on viral fitness and in drug susceptibility were determined in reverse-genetic experiments. RESULTS: Adapted full-length HCV genotype 6a recombinants HK2cc and HK6acc had fast propagation kinetics and high infectivity titers. Compared with an HCV genotype 1a recombinant, HCV genotype 6a recombinants of strains HK2 and HK6a were equally sensitive to daclatasvir, elbasvir, velpatasvir, pibrentasvir, and sofosbuvir, but less sensitive to ledipasvir, ombitasvir, and dasabuvir. Long-term exposure of HCV genotype 6a-infected Huh7.5 cells with a combination of velpatasvir and sofosbuvir resulted in clearance of the virus, but the virus escaped the effects of single inhibitors via emergence of the RAS L31V in NS5A (conferring resistance to velpatasvir) and S282T in NS5B (conferring resistance to sofosbuvir). Engineered recombinant genotype 6a viruses with single RAS mediated resistance to velpatasvir or sofosbuvir. HCV genotype 6a viruses with RAS NS5A-L31V or NS5B-S282T were however, able to propagate and escape in Huh7.5 cells exposed to the combination of velpatasvir and sofosbuvir. Further, HCV genotype 6a with NS5A-L31V was able to propagate and escape in the presence of pibrentasvir with emergence of NS5A-L28S, conferring a high level of resistance to this inhibitor. CONCLUSIONS: Strains of HCV genotype 6a isolated from patients can be adapted to propagate in cultured cells, permitting studies of the complete life cycle for this important genotype. The combination of velpatasvir and sofosbuvir is required to block propagation of original HCV genotype 6a, which quickly becomes resistant to single inhibitors via the rapid emergence and persistence of RAS. These features of HCV genotype 6a could compromise treatment.


Assuntos
Antivirais/farmacologia , Farmacorresistência Viral/genética , Hepacivirus/fisiologia , Hepatite C Crônica/tratamento farmacológico , Substituição de Aminoácidos , Antivirais/uso terapêutico , Benzimidazóis/farmacologia , Benzimidazóis/uso terapêutico , Carbamatos/farmacologia , Carbamatos/uso terapêutico , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Quimioterapia Combinada/métodos , Genótipo , Hepacivirus/genética , Hepatite C Crônica/virologia , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/uso terapêutico , Humanos , Pirrolidinas , Sofosbuvir/farmacologia , Sofosbuvir/uso terapêutico , Proteínas não Estruturais Virais/antagonistas & inibidores
18.
Gastroenterology ; 154(5): 1435-1448, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29274866

RESUMO

BACKGROUND & AIMS: Inhibitors of the hepatitis C virus (HCV) NS5A protein are a key component of effective treatment regimens, but the genetic heterogeneity of HCV has limited the efficacy of these agents and mutations lead to resistance. We directly compared the efficacy of all clinically relevant NS5A inhibitors against HCV genotype 1-7 prototype isolates and resistant escape variants, and investigated the effects of pre-existing resistance-associated substitutions (RAS) on HCV escape from treatment. METHODS: We measured the efficacy of different concentrations of daclatasvir, ledipasvir, ombitasvir, elbasvir, ruzasvir, velpatasvir, and pibrentasvir in cultured cells infected with HCV recombinants expressing genotype 1-7 NS5A proteins with or without RAS. We engineered HCV variants that included RAS identified in escape experiments, using recombinants with or without T/Y93H and daclatasvir, or that contained RAS previously reported from patients. RESULTS: NS5A inhibitors had varying levels of efficacy against original and resistant viruses. Only velpatasvir and pibrentasvir had uniform high activity against all HCV genotypes tested. RAS hotspots in NS5A were found at amino acids 28, 30, 31, and 93. Engineered escape variants had high levels of fitness. Pibrentasvir had the highest level of efficacy against variants; viruses with RAS at amino acids 28, 30, or 31 had no apparent resistance to pibrentasvir, and HCV with RAS at amino acid 93 had a low level of resistance to this drug. However, specific combinations of RAS and deletion of amino acid 32 led to significant resistance to pibrentasvir. For the remaining NS5A inhibitors tested, RAS at amino acids 28 and 93 led to high levels of resistance. Among these inhibitors, velpatasvir was more effective against variants with RAS at amino acid 30 and some variants with RAS at amino acid 31 than the other agents. Variants with the pre-existing RAS T/Y93H acquired additional NS5A changes during escape experiments, resulting in HCV variants with specific combinations of RAS, showing high fitness and high resistance. CONCLUSIONS: We performed a comprehensive comparison of the efficacy of the 7 clinically relevant inhibitors of HCV NS5A and identified variants associated with resistance to each agent. These findings could improve treatment of patients with HCV infection.


Assuntos
Antivirais/farmacologia , Farmacorresistência Viral , Inibidores Enzimáticos/farmacologia , Hepacivirus/efeitos dos fármacos , Hepatite C/tratamento farmacológico , Proteínas não Estruturais Virais/antagonistas & inibidores , Linhagem Celular , Relação Dose-Resposta a Droga , Farmacorresistência Viral/genética , Genótipo , Hepacivirus/enzimologia , Hepacivirus/genética , Hepacivirus/patogenicidade , Hepatite C/virologia , Humanos , Fenótipo , Transfecção , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-28348150

RESUMO

Hepatitis C virus (HCV) strains belong to seven genotypes with numerous subtypes that respond differently to antiviral therapies. Genotype 1, and primarily subtype 1b, is the most prevalent genotype worldwide. The development of recombinant HCV infectious cell culture systems for different variants, permitted by the high replication capacity of strain JFH1 (genotype 2a), has advanced efficacy and resistance testing of antivirals. However, efficient infectious JFH1-based cell cultures of subtype 1b are limited and comprise only the 5' untranslated region (5'UTR)-NS2, NS4A, or NS5A regions. Importantly, it has not been possible to develop efficient 1b infectious systems expressing the NS3/4A protease, an important target of direct-acting antivirals. We developed efficient infectious JFH1-based cultures with genotype 1b core-NS5A sequences of strains DH1, Con1, and J4 by using previously identified HCV cell culture adaptive substitutions A1226G, R1496L, and Q1773H. These viruses spread efficiently in Huh7.5 cells by acquiring additional adaptive substitutions, and final recombinants yielded peak supernatant infectivity titers of 4 to 5 log10 focus-forming units (FFU)/ml. We subsequently succeeded in adapting a JFH1-based 5'UTR-NS5A DH1 recombinant to efficient growth in cell culture. We evaluated the efficacy of clinically relevant NS3/4A protease and NS5A inhibitors against the novel genotype 1b viruses, as well as against previously developed 1a viruses. The inhibitors were efficient against all tested genotype 1 viruses, with NS5A inhibitors showing half-maximal effective concentrations several orders of magnitude lower than NS3/4A protease inhibitors. In summary, the developed HCV genotype 1b culture systems represent valuable tools for assessing the efficacy of various classes of antivirals and for other virological studies requiring genotype 1b infectious viruses.


Assuntos
Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Inibidores de Proteases/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/genética , Regiões 5' não Traduzidas/genética , Proteínas de Transporte/antagonistas & inibidores , Linhagem Celular Tumoral , Hepacivirus/genética , Hepacivirus/crescimento & desenvolvimento , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Testes de Sensibilidade Microbiana
20.
Gastroenterology ; 151(5): 973-985.e2, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27453546

RESUMO

BACKGROUND & AIMS: Direct-acting antivirals (DAAs) effectively eradicate chronic hepatitis C virus (HCV) infection, although HCV genotype 3a is less responsive to these drugs. We aimed to develop genotype 3a infectious cultures and study the effects of inhibitors of NS5A and NS5B and resistance to sofosbuvir-the only nucleotide analog approved for treatment of chronic HCV infection. METHODS: The developed HCV genotype 3a full-length genome (DBN3a), with a strain-DBN coding sequence, modified NS5B consensus sequence, pS52 untranslated regions, and coding mutations from a culture-efficient JFH1-based core-NS5A (DBN) recombinant, was transfected into Huh7.5 cells. The efficacy of selected DAAs was determined in dose-response assays, in which the number of HCV-infected cells was measured after incubation with different concentrations of the specific DAA. Long-term culture of infected Huh7.5 cells with increasing concentrations of sofosbuvir was used to promote selection of HCV-resistant variants. RESULTS: We engineered a DBN3a variant with 17 substitutions (DBN3acc) that had replication and propagation kinetics in Huh7.5 cells comparable with prototype J6/JFH1. The adaptive mutations also produced culture-efficient DBN-based recombinants with NS5B from HCV genotype 3a strains S52 and DH11. Compared with genotype 1a, genotype 3a was less sensitive to daclatasvir, ledipasvir, and elbasvir, but equally sensitive to ombitasvir, velpatasvir, beclabuvir, dasabuvir, MK-3682, and sofosbuvir. Exposure of Huh7.5 cells infected with DBN3a to sofosbuvir led to identification of an escape variant with substitutions in NS5B, including the resistance-associated substitution S282T. This variant showed increased infectivity of Huh7.5 cells, compared with DBN3a, and was genetically stable in cell cultures without sofosbuvir. Sofosbuvir, MK-3682, dasabuvir, or combinations of sofosbuvir and ledipasvir or sofosbuvir and velpatasvir had decreased efficacy against infection with the DBN3a sofosbuvir escape variant. CONCLUSIONS: We developed a system for highly efficient culture of HCV genotype 3a. Genotype 1a has a high genetic barrier to resistance for sofosbuvir, whereas resistance to this DAA can be induced in genotype 3a. We therefore isolated HCV genotype 3a variants with reduced sensitivity to sofosbuvir, with increased fitness and with cross-resistance to other NS5B inhibitors. These findings indicate that sofosbuvir escape variants could compromise the effectiveness of nucleotide analogs against HCV. GenBank accession numbers: KX280712-KX280716.


Assuntos
Antivirais/farmacologia , Técnicas de Cultura de Células/métodos , Farmacorresistência Viral , Hepacivirus/efeitos dos fármacos , Sofosbuvir/farmacologia , Linhagem Celular , Genótipo , Hepacivirus/genética , Hepacivirus/patogenicidade , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA